quinta-feira, 1 de março de 2018

Hubble fornece evidências de uma nova física no Universo

Os astrônomos através do telescópio espacial Hubble efetuaram as medições mais precisas da taxa de expansão do Universo desde que foi calculada pela primeira vez há quase um século. Curiosamente, os resultados induz considerar que podem haver evidências de algo inesperado operando no Universo.

NGC 3972 e NGC 1015

© STScI/A. Riess (NGC 3972 e NGC 1015)

Estas imagens do telescópio espacial Hubble mostram duas das 19 galáxias analisadas num projeto para melhorar a precisão da taxa de expansão do Universo, um valor conhecido como a constante de Hubble. As composições a cores mostram NGC 3972 (esquerda) e NGC 1015 (direita), localizadas a 65 e 118 milhões de anos-luz, respetivamente. Os círculos amarelos em cada galáxia representam as localizações de estrelas pulsantes chamadas variáveis Cefeidas.

Isto porque a descoberta mais recente do Hubble confirma uma discrepância incômoda que mostra que o Universo parece estar se expandindo mais depressa, agora, do que era esperado dada a sua trajetória vista pouco depois do Big Bang. Os pesquisadores sugerem que pode ser necessária uma nova física para explicar a inconsistência.

"A comunidade está realmente lutando para compreender o significado desta discrepância," realça Adam Riess, do STScI (Space Telescope Science Institute) e da Universidade Johns Hopkins.

A equipe de Riess vem usando o Hubble ao longo dos últimos seis anos para refinar as medições das distâncias a galáxias, com auxílio das suas estrelas como marcadores. Estas medições são usadas para calcular quão rápido o Universo se expande com o tempo, um valor conhecido como a constante de Hubble. O novo estudo da equipe estica o número de estrelas analisadas até 10 vezes a distância dos resultados anteriores do Hubble.

Mas o valor de Riess reforça a disparidade com o valor esperado e derivado das observações da expansão do Universo inicial, 378.000 anos após o Big Bang, o evento violento que formou o Universo há aproximadamente 13,8 bilhões de anos. Estas medições foram feitas pelo satélite Planck da ESA, que mapeia o fundo cósmico de micro-ondas, uma relíquia do Big Bang. A diferença entre estes dois valores é aproximadamente de 9%. As novas medições do Hubble ajudam a reduzir as hipóteses de que a discrepância entre os dois valores é mera coincidência para 1 em 5.000.

O resultado do Planck previa que o valor da constante de Hubble deveria agora ser de 67 quilômetros por segundo por megaparsec (3,3 milhões de anos-luz), e que não podia ser superior a 69 quilômetros por segundo por megaparsec. Isto significa que por cada 3,3 milhões de anos-luz que uma galáxia está de nós, move-se 67 km/s mais depressa. Mas a equipe de Riess mediu um valor de 73 km/s/Mpc, indicando que as galáxias se movem a um ritmo mais rápido do que o implícito nas observações do Universo inicial.

Os dados do Hubble são tão precisos que não é possível descartar a diferença entre os dois resultados como erros em qualquer medição única ou método. "Ambos os resultados foram testados de várias formas, assim que a não ser que existam uma série de erros não relacionados, mas deve ser uma característica do Universo," explica Riess.

Riess delineou algumas explicações possíveis para esta discrepância, todas relacionadas com os 95% do Universo que está envolto em escuridão. Uma possibilidade é que a energia escura, já conhecida por acelerar o cosmos, pode estar afastando as galáxias umas das outras com uma força ainda maior, ou crescente. Isto significa que a própria aceleração pode não ter um valor constante no Universo, mas mudar ao longo do tempo do Universo. Riess partilhou o Prêmio Nobel pela descoberta, em 1998, da aceleração do Universo.

Outra ideia é que o Universo contém uma nova partícula subatômica que viaja perto da velocidade da luz. Estas velozes partículas são coletivamente chamadas "radiação escura" e incluem partículas anteriormente conhecidas como os neutrinos, criados em reações nucleares e decaimentos radioativos. Ao contrário de um neutrino normal, que interage por força subatômica, esta nova partícula só seria afetada pela gravidade e é apelidada de "neutrino estéril."

Ainda outra possibilidade fascinante é que a matéria escura (uma forma invisível de matéria não composta por prótons, nêutrons e elétrons) interage mais fortemente com a matéria normal ou com a radiação do que se julgava anteriormente.

Qualquer um destes cenários mudaria os conteúdos do Universo inicial, levando a inconsistências nos modelos teóricos. Estas inconsistências resultariam num valor incorreto para a constante de Hubble, inferido a partir de observações do cosmos jovem. Este valor seria então incompatível com o número derivado das observações do Hubble.

Riess e colegas não têm ainda quaisquer respostas para este problema vexante, mas a sua equipe continuará trabalhando no ajuste da taxa de expansão do Universo. Até agora, a equipe de Riess, de nome SH0ES (Supernova H0 for the Equation of State), diminuiu a incerteza para 2,3%. Antes do Hubble ter sido lançado em 1990, as estimativas da constante de Hubble variavam por um fator de dois. Um dos objetivos principais do Hubble era o de ajudar os astrônomos a reduzir o valor desta incerteza até um erro de apenas 10%. Desde 2005, o grupo tem procurado aprimorar a precisão da constante de Hubble até que permita uma melhor compreensão do comportamento do Universo.

A equipe conseguiu refinar o valor da constante de Hubble otimizando e fortalecendo a construção da escada de distâncias cósmicas, que os astrônomos usam para medir distâncias precisas de galáxias próximas e distantes. Os pesquisadores compararam estas distâncias com a expansão do espaço, conforme medido pela dilatação da luz de galáxias cada vez mais distantes. Usaram então a aparente velocidade externa das galáxias a cada distância para calcular a constante de Hubble.

Mas o valor da constante de Hubble só é tão preciso quanto a precisão das medições. Os astrônomos selecionaram classes especiais de estrelas e supernovas como "marcadores cósmicos" para medir com precisão as distâncias das galáxias.

Entre as mais confiáveis para distâncias menores estão as variáveis Cefeidas, estrelas pulsantes que aumentam e diminuem de brilho a ritmos que correspondem ao seu brilho intrínseco. As suas distâncias, portanto, podem ser inferidas através da comparação do seu brilho intrínseco com o seu brilho aparente visto da Terra.

A astrônoma Henrietta Leavitt foi a primeira a reconhecer a utilidade das variáveis Cefeidas para medir distâncias em 1913. Mas o primeiro passo é medir as distâncias às Cefeidas independentemente do seu brilho, usando uma ferramenta básica de geometria chamada paralaxe. A paralaxe é a mudança aparente na posição de um objeto devido a uma alteração do ponto de vista de um observador. Esta técnica foi inventada pelos antigos Gregos que a usaram para medir a distância da Terra à Lua.

O resultado mais recente do Hubble é baseado em medições da paralaxe de oito Cefeidas recém-analisadas na nossa Via Láctea. Estas estrelas estão cerca de 10 vezes mais distantes do que as estudadas anteriormente, residindo entre 6.000 e 12.000 anos-luz da Terra, o que as torna mais difíceis de medir. Pulsam a intervalos mais longos, tal como as Cefeidas observadas pelo Hubble em galáxias distantes que contêm outra "régua" confiável, explosões estelares chamadas supernovas do Tipo Ia. Este tipo de supernova explode com um brilho uniforme e é brilhante o suficiente para ser observado relativamente longe. As observações anteriores do Hubble estudaram 10 cefeidas que piscam mais depressa localizadas de 300 a 1.600 anos-luz da Terra.

Para medir a paralaxe com o Hubble, a equipe teve que avaliar a pequena, mas aparente oscilação das Cefeidas devido ao movimento da Terra em torno do Sol. Estas oscilações têm aproximadamente 1/100 do tamanho de um único pixel na câmara do telescópio, equivalentes ao tamanho aparente de um grão de areia a 160,9 km de distância.

Portanto, para garantir a precisão das medições foi desenvolvido um método inteligente que não tinha sido previsto durante o lançamento do Hubble. Os cientistas inventaram uma técnica de varrimento na qual o telescópio media a posição de uma estrela mil vezes por minuto a cada seis meses durante quatro anos.

A equipe calibrou o brilho verdadeiro das oito estrelas que pulsam lentamente e cruzou-as com as suas primas mais distantes a fim de encolher as imprecisões na sua escada de distâncias. Os inpesquisadores compararam então o brilho das Cefeidas e das supernovas nestas galáxias com maior confiança, para que pudessem medir com mais firmeza o brilho verdadeiro das estrelas e, portanto, calcular distâncias de centenas de supernovas em galáxias distantes com maior precisão.

Outra vantagem deste estudo é o uso do mesmo instrumento, o WFC3 (Wide Field Camera 3) do Hubble, para calibrar as luminosidades tanto das Cefeidas próximas como daquelas em outras galáxias, eliminando os erros sistemáticos que são inevitavelmente introduzidos quando comparando medições obtidas por diferentes telescópios.

Normalmente, se a cada seis meses quando é medida a mudança na posição de uma estrela em relação a uma segunda a estas distâncias, há uma limitação da capacidade em descobrir exatamente onde está a estrela. Usando a nova técnica, o Hubble move-se lentamente através de um alvo estelar e capta a imagem como uma linha de luz. "Este método permite oportunidades repetidas para medir os deslocamentos extremamente pequenos devido à paralaxe. Estamos medindo a separação entre duas estrelas, não apenas num local na câmara, mas repetidamente durante milhares de vezes, reduzindo os erros nas medições," acrescenta Riess.

O objetivo da equipe é reduzir ainda mais a incerteza usando dados do Hubble e do observatório espacial Gaia da ESA, que irá medir as posições e distâncias de estrelas com uma precisão sem precedentes. Esta precisão será necessária para diagnosticar a causa desta discrepância.

Os resultados foram aceitos para publicação na revista The Astrophysical Journal.

Fonte: Space Telescope Science Institute

O X lunar

A marca em formato de X na superfície lunar é facilmente visível com binóculos ou com pequenos telescópios, e até mesmo com câmeras fotográficas que tenham um zoom considerável, mas não são todos que conseguem ver.

X lunar

© Henrik Adamsson (X lunar)

Para registrar, ou observar o X você tem que olhar para a Lua no momento certo, pois ele só aparece poucas horas antes da Lua entrar na sua fase quarto crescente. O X lunar é na verdade uma ilusão produzida ao longo da linha que divide o dia da noite na Lua, chamada de terminador, e se forma devido a uma configuração das crateras Blanchinus, La Caille e Purbach.

Perto da fase de quarto crescente da Lua, um astronauta parado ali veria o Sol nascer lentamente perto do horizonte. Temporariamente, as paredes das crateras recebem luz do Sol, enquanto que o assoalho das crateras permanece na escuridão. Visto da Terra, as seções contrastantes das paredes brilhantes, contra o assoalho escuro cria a impressionante forma de um X. Esta nítida imagem da Lua, mostrando o X Lunar, foi registrada em 22 de Fevereiro de 2018. Outra detalhe, na Lua também é possível ver o V Lunar, visto no centro da imagem.

Fonte: NASA

terça-feira, 27 de fevereiro de 2018

Uma jaula magnética no Sol cessa uma erupção solar

Uma nova investigação mostra que uma dramática luta pelo poder à superfície do Sol está no cerne das erupções solares.

proeminência de classe X entrando em erupção

© NASA/SDO (proeminência de classe X entrando em erupção)

O trabalho destaca o papel da topologia magnética do Sol no desenvolvimento de erupções solares que podem desencadear eventos meteorológicos espaciais em torno da Terra.

Os cientistas, liderados por Tahar Amari, astrofísico do Centro de Física Teórica da Escola Politécnica em Palaiseau Cedex, França, tiveram em conta as proeminências solares, explosões intensas de radiação e luz. Muitas proeminências solares são seguidas por uma ejeção de massa coronal, ou EMC, uma enorme erupção em forma de material solar e campos magnéticos, mas algumas não são, o que diferencia as duas situações não é claramente entendido.

Usando dados da SDO (Solar Dynamics Observatory) da NASA, os cientistas examinaram um grupo de manchas solares com o tamanho de Júpiter em outubro em 2014, uma área de campos magnéticos complexos, muitas vezes o local da atividade solar. Este foi o maior grupo dos últimos dois ciclos solares e uma região altamente ativa. Apesar das condições parecerem ideais para uma erupção, a região nunca produziu uma grande EMC na sua jornada através do Sol. No entanto, emitiu uma poderosa proeminência de classe X. O que determina se uma proeminência está associada com uma EMC?

A equipe de cientistas incluiu observações da missão SDO de campos magnéticos na superfície do Sol em modelos poderosos que calculam o campo magnético na coroa do Sol, ou atmosfera superior, e examinou como evoluiu no tempo imediatamente antes da proeminência. O modelo revela uma batalha entre duas estruturas magnéticas fundamentais: um laço magnético torcido, conhecida por estar associada com o início das EMCs, e uma jaula densa de campos magnéticos que cobrem o laço.

Os cientistas descobriram que esta jaula magnética impediu fisicamente com que a EMC entrasse em erupção naquele dia. Poucas horas antes da proeminência, a rotação natural da mancha solar revirou o laço magnético e cresceu cada vez mais torcido e instável, como um elástico bem enrolado. Mas o laço nunca entrou em erupção a partir da superfície: o seu modelo demonstra que não teve energia suficiente para romper a jaula. No entanto, foi volátil o suficiente para atacar parte da jaula, desencadeando a forte proeminência solar.

Ao mudarem as condições da jaula no seu modelo, os cientistas descobriram que se a jaula tivesse sido mais fraca naquele dia, uma grande EMC teria entrado em erupção no dia 24 de outubro de 2014. O grupo está interessado em desenvolver o seu modelo para estudar como o conflito entre a jaula magnética e o laço se desenrola em outras erupções.

"Nós conseguimos seguir a evolução de uma região ativa, prever a probabilidade de erupção e calcular a quantidade máxima de energia que a erupção pode liberar," comenta Amari. "Este é um método prático que pode tornar-se importante na previsão da meteorologia do espaço à medida que as capacidades computacionais aumentam."

Este trabalho foi publicado num artigo da revista Nature.

Fonte: Goddard Space Flight Center

segunda-feira, 26 de fevereiro de 2018

Um frenesi de estrelas na galáxia irregular IC 4710

Descoberta em 1900 pelo astrônomo DeLisle Stewart e aqui captada pelo telescópio espacial Hubble, a IC 4710 é uma visão inegavelmente espetacular.

IC 4710

© Hubble (IC 4710)

A galáxia é uma nuvem ocupada de estrelas brilhantes, com bolsões brilhantes marcando a formação de novas estrelas espalhadas por suas bordas.

A IC 4710 é uma galáxia irregular anã. Como o nome sugere, tais galáxias são irregulares e caóticas na aparência, sem protuberâncias centrais e braços espirais, são distintamente diferentes de espirais ou elípticas. Pensa-se que as galáxias irregulares podem ter sido espirais ou elípticas, mas se distorceram ao longo do tempo através de forças gravitacionais externas durante interações ou fusões com outras galáxias. As galáxias anãs irregulares em particular são importantes para a compreensão geral da evolução das galáxias, como são semelhantes às primeiras galáxias que se formaram no Universo.

A IC 4710 está localizada a cerca de 25 milhões de anos-luz de distância da Terra na constelação do Pavão. Esta constelação está localizada no céu do hemisfério sul e também contém o terceiro aglomerado globular de estrelas mais brilhante do céu, o NGC 6752, a galáxia espiral NGC 6744 e seis sistemas planetários conhecidos, incluindo o sistema estelar HD 181433 que é anfitrião de uma super-Terra.

Os dados usados ​​para criar esta imagem foram coletados pela Advanced Camera for Surveys (ACS) do Hubble.

Fonte: ESA

A formação de um disco protoplanetário

Aninhado na jovem região de formação estelar Ophiuchus, a 410 anos-luz de distância do Sol, um disco protoplanetário chamado AS 209 está lentamente tomando forma.

AS 209

© ESO/ALMA (AS 209)

Esta bela imagem foi captada com o telescópio de alta resolução ALMA (Atacama Large Millimeter Array) e revela um curioso padrão de anéis e espaços vazios na poeira que circunda a estrela jovem.

Os discos protoplanetários são discos planos em rotação, que se encontram repletos de gás e poeira densos e que rodeiam estrelas recentemente formadas. São os reservatórios da matéria que um dia se transforma em planetas, satélites e outros corpos menores em órbita da respectiva estrela. Com menos de 1 milhão de anos de idade, este sistema é muito jovem, no entanto podemos ver já dois espaços vazios que estão sendo claramente abertos no disco.

O espaço vazio mais exterior é profundo, largo e essencialmente uma zona livre de poeira, o que leva os astrônomos a pensar que um planeta gigante, quase com a mesma massa de Saturno, está orbitando neste lugar, a cerca de 800 minutos-luz da estrela central, o que corresponde a mais de três vezes a distância entre Netuno e o Sol!

À medida que o planeta “limpa” o seu caminho, a poeira acumula-se na periferia exterior da sua órbita, dando origem a anéis muito bem definidos. O espaço vazio mais fino e interior pode ter sido formado por um planeta menor, mas existe a intrigante possibilidade do planeta maior e mais distante ter criado os dois espaços vazios que são vistos na imagem.

Este planeta do tipo de Saturno situado tão distante da estrela central coloca-nos interessantes questões sobre a formação de planetas na periferia de discos protoplanetários em escalas de tempo particularmente curtas.

Fonte: ESO

domingo, 25 de fevereiro de 2018

A Aranha e a Mosca

A imagem abaixo mostra duas grandes nebulosas de emissão na direção da constelação de Auriga.

IC 417 & NGC 1931

© Joe Morris (IC 417 e NGC 1931)

A nuvem de gás em forma de aranha à esquerda é na verdade uma nebulosa de emissão chamada IC 417, enquanto a nuvem menor em forma de mosca à direita é denominada de NGC 1931, e é uma nebulosa de emissão e de reflexão. A NGC 1931 foi descoberta pelo astrônomo William Herschel em 1793.

Cerca de 10.000 anos-luz distantes, ambas as nebulas possuem aglomerados abertos de estrelas jovens. Em escala, a mais compacta NGC 1931 tem cerca de 10 anos-luz de extensão.

Fonte: NASA

sábado, 24 de fevereiro de 2018

Os segredos da mais distante supernova já detectada

Uma equipe internacional de astrônomos confirmou a descoberta da supernova mais distante já detectada, uma enorme explosão cósmica que ocorreu há três-quartos da idade do próprio Universo.

ilustração de uma supernova

© NASA (ilustração de uma supernova)

A estrela explosiva, de nome DES16C2nm, foi detectada pelo Levantamento DES (Dark Energy Survey), uma colaboração internacional para mapear centenas de milhões de galáxias a fim de descobrir mais informações sobre a energia escura, a misteriosa força que se acredita estar provocando a expansão acelerada do Universo.

Conforme detalhado num novo estudo, a luz do evento levou 10,5 bilhões de anos para alcançar a Terra, tornando-se na supernova mais antiga já descoberta. Pensa-se que o próprio Universo tenha 13,8 bilhões de anos.

Uma supernova é a explosão de uma estrela massiva no final do seu ciclo de vida. A DES16C2nm está classificada como uma supernova superluminosa, a classe mais brilhante e mais rara de supernova, descoberta pela primeira vez há dez anos, que se pensa ser provocada pela queda de material no objeto mais denso do Universo, uma estrela de nêutrons de rotação rápida, recém-formada na explosão de uma estrela massiva.

A luz ultravioleta das supernovas superluminosas informa-nos sobre a quantidade de metal produzido na explosão e sobre a temperatura da própria explosão, que são fundamentais para compreender o que provoca e impulsiona estas explosões cósmicas.

A DES16C2nm foi detectada pela primeira vez em agosto de 2016 e a sua distância e brilho extremo confirmados em outubro deste ano usando três dos telescópios mais poderosos do mundo, o VLT (Very Large Telescope) e o Magalhães no Chile, e o Observatório Keck no Havaí.

O levantamento DES envolve mais de 400 cientistas de mais de 25 instituições de todo o mundo, um projeto de cinco anos que começou em 2013.

A colaboração construiu e está aplicando uma câmara digital extremamente sensível de 570 megapixéis, a DECam, acoplada ao telescópio Blanco de 4 metros no Observatório Inter-Americano de Cerro Tololo, no alto dos Andes Chilenos.

Ao longo de cinco anos (2013-2018), a colaboração DES está usando 525 noites de observação para realizar um levantamento profundo e abrangente a fim de registar informação sobre 300 milhões de galáxias que estão a bilhões de anos-luz da Terra.

A pesquisa está captando imagens de 5.000 graus quadrados do céu do hemisfério sul através de cinco filtros ópticos para obter informações detalhadas sobre cada galáxia. Uma fração do tempo de observação é usada para observar regiões menores do céu, aproximadamente uma vez por semana, para encontrar e estudar milhares de supernovas e outros eventos astrofísicos transientes.

O novo estudo foi publicado na revista The Astrophysical Journal.

Fonte: University of Portsmouth

sexta-feira, 23 de fevereiro de 2018

Astrônomo amador capta rara primeira luz de massiva explosão estelar

Graças aos fortuitos instantâneos captados por um astrônomo amador na Argentina, cientistas obtiveram a sua primeira visão do surto inicial de luz da explosão de uma estrela massiva.

supernova 2016gkg na galáxia NGC 613

© UC Santa Cruz (supernova 2016gkg na galáxia NGC 613)

Durante testes de uma nova câmara, Víctor Buso captou imagens de uma galáxia distante antes e depois da "ruptura de choque" da supernova, quando uma onda de pressão supersônica do núcleo explosivo de uma estrela atinge e aquece o gás à superfície a uma temperatura muito alta, fazendo com que emita luz e aumente rapidamente de brilho.

Até à data, ninguém tinha conseguido captar a "primeira luz óptica" de uma supernova normal, isto é, uma não associada com uma explosão de raios gama ou raios X, uma vez que as estrelas explodem aparentemente ao acaso no céu, e a luz da ruptura de choque é fugaz. Os novos dados fornecem pistas importantes sobre a estrutura física da estrela logo antes do seu desaparecimento catastrófico e sobre a natureza da própria explosão.

"Os astrônomos profissionais há muito tempo que procuram este evento," comenta o astrônomo Alex Filippenko, da Universidade da Califórnia em Berkeley, EUA, que acompanhou a descoberta nos observatórios Lick e Keck, que se mostraram fundamentais para uma análise mais detalhada da explosão com o nome SN 2016gkg. "As observações de estrelas nos primeiros momentos em que começam a explodir fornecem informações que não podem ser obtidas diretamente de qualquer outra forma."

No dia 20 de setembro de 2016, Buso, de Rosario, Argentina, testava uma nova câmara no seu telescópio de 16 polegadas, captando uma série de exposições de curta duração da galáxia espiral NGC 613, localizada a aproximadamente 80 milhões de anos-luz da Terra na direção da constelação do hemisfério sul de Escultor.

Por sorte, examinou estas imagens imediatamente e notou um fraco ponto de luz que aumentou rapidamente de brilho perto do final de um braço espiral e que não era visível no seu primeiro conjunto de imagens.

A astrônoma Melina Bersten e colegas do Instituto de Astrofísica de La Plata, na Argentina, souberam rapidamente da descoberta serendipitosa e perceberam que Buso havia captado um evento raro, parte da primeira hora após a luz emergir da explosão de uma enorme estrela. Ela estimou que as hipóteses de uma tal descoberta, a primeira supernova de Buso, são de uma em 10 milhões, talvez até ainda menos, uma em 100 milhões.

Bersten entrou imediatamente em contato com um grupo internacional de astrônomos para ajudar a realizar observações frequentes e adicionais de SN 2016gkg ao longo dos dois meses seguintes, revelando mais sobre o tipo de estrela que explodiu e a natureza da explosão.

Filippenko e colegas obtiveram uma série de sete espectros, onde a luz é dividida nas suas cores componentes, como um arco-íris, com o telescópio Shane de 3 metros do Observatório Lick da Universidade da Califórnia perto de San Jose, e com os telescópios gêmeos de 10 metros do Observatório W. M. Keck em Maunakea, Havaí. Isto permitiu que a equipe internacional determinasse que a explosão era uma supernova do Tipo IIb: a explosão de uma estrela massiva que já tinha perdido a maior parte do invólucro de hidrogênio, uma espécie de explosão estelar primeiramente identificada observacionalmente por Filippenko em 1987.

Combinando os dados com modelos teóricos estimou-se que a massa inicial da estrela era cerca de 20 vezes a massa do nosso Sol, embora tenha perdido a maior parte dela, provavelmente para uma estrela companheira, e ficado reduzida a mais ou menos 5 massas solares antes da explosão.

A equipe de Filippenko continuou monitorando a mudança de brilho da supernova ao longo de dois meses com outros telescópios do Observatório Lick: o telescópio automático de imagem Katzman de 0,76 metros e o telescópio Nickel de 1 metro.

A descoberta e os resultados das observações de acompanhamento de todo o mundo foram publicados na na revista Nature.

Fonte: Astronomy

Júpiter observado no infravermelho

Júpiter parece um pouco diferente, quando observado na luz infravermelha.

Júpiter observado no infravermelho

© Hubble/Judy Schmidt (Júpiter observado no infravermelho)

Para melhor entender os movimentos das nuvens de Júpiter e para ajudar a sonda Juno da NASA, a entender o contexto planetário, o telescópio espacial Hubble está sendo direcionado para fazer imagens regulares de todo o sistema Joviano.

As cores de Júpiter que estão sendo monitoradas, vão além do intervalo de cores normalmente observado pelo olho humano, já que inclui tanto as emissões no ultravioleta e no infravermelho. A imagem acima mostra Júpiter, fotografado pelo Hubble em 2016, onde três bandas da luz infravermelha próxima foram digitalmente tratadas para apresentar de forma colorida a imagem do planeta.

Júpiter aparece diferente no infravermelho, pois a quantidade de luz do Sol refletida de volta é distinta, dependendo da altura das nuvens e de brilhos discrepantes devido à latitudes diferentes. Mesmo assim, muitos aspectos tradicionais de Júpiter se mantêm, incluindo a as zonas brilhantes e os cinturões escuros, que circulam o planeta próximo do equador, a Grande Mancha Vermelha também pode ser vista no canto inferior esquerdo da imagem, e o sistema de tempestades ao sul dela, conhecido como colar de pérolas.

Os polos brilham mais intensamente pois a névoa de alta altitude é energizada por partículas carregadas da magnetosfera de Júpiter. A Juno completou recentemente sua décima de doze órbitas planejadas em torno do planeta e continua registrando dados para ajudar a humanidade entender, não somente o clima de Júpiter, mas o que está localizado abaixo de suas nuvens.

Fonte: NASA

Buracos negros supermassivos crescem mais do que as suas galáxias

De acordo com dois novos estudos que usam dados do observatório de raios X Chandra da NASA e de outros telescópios, os maiores buracos negros do Universo estão crescendo mais depressa do que a taxa de formação estelar das suas galáxias.

ilustração de um buraco negro supermassivo

© M. Helfenbein (ilustração de um buraco negro supermassivo)

Ao longo de muitos anos, os astrônomos recolheram dados sobre a formação de estrelas em galáxias e sobre o crescimento de buracos negros supermassivos nos seus centros.

Agora, descobertas de dois grupos independentes de pesquisadores indicam que os buracos negros nas galáxias massivas cresceram muito mais depressa do que nas galáxias menos massivas.

Usando grandes quantidades de dados do observatório de raios X Chandra, do telescópio espacial Hubble e de outros observatórios, os astrônomos estudaram a taxa de crescimento de buracos negros em galáxias a distâncias de 4,3 a 12,2 bilhões de anos-luz da Terra. Este trabalho foi liderado por Guang Yang da Universidade Estatal da Pensilvânia, EUA. Os dados de raios X incluíram os levantamentos Chandra Deep Field-South & North e COSMOS-Legacy.

Os cientistas calcularam a relação entre a taxa de crescimento de um buraco negro supermassivo e a taxa de crescimento das estrelas na sua galáxia hospedeira. Uma ideia comum é que esta relação é aproximadamente constante para todas as galáxias.

Em vez disso, os pesquisadores descobriram que esta proporção é muito maior para galáxias mais massivas. Para galáxias que contêm um conteúdo estelar equivalente a cerca de 100 bilhões de massas solares, a proporção é cerca de dez vezes maior do que para galáxias com um conteúdo estelar equivalente a cerca de 10 bilhões de massas solares.

Uma explicação é que talvez as galáxias massivas sejam mais eficazes na absorção de gás frio aos seus buracos negros supermassivos centrais do que as menos massivas.

Outro grupo de cientistas encontrou, independentemente, evidências de que o crescimento dos buracos negros mais massivos ultrapassou o crescimento estelar nas suas galáxias hospedeiras. Mar Mezcua (Instituto de Ciências Espaciais da Espanha) e colegas estudaram buracos negros em algumas das mais brilhantes e massivas galáxias do Universo. Estudaram 72 galáxias localizadas no centro de aglomerados galácticos a distâncias de até mais ou menos 3,5 bilhões de anos-luz da Terra. O estudo usou dados de raios X do Chandra e dados de rádio do ATCA (Australia Telescope Compact Array), do VLA (Karl G. Jansky Very Large Array) e do VLBA (Very Long Baseline Array).

Mezcua e colegas estimaram as massas dos buracos negros nestes aglomerados de galáxias usando uma relação bem conhecida que liga a massa de um buraco negro à emissão de raios X e rádio associada com o buraco negro. Descobriu-se que as massas dos buracos negros são dez vezes maiores do que as massas estimadas por outro método.

"Descobrimos que os buracos negros são muito maiores do que esperávamos," realça Mezcua. "Talvez tenham tido um avanço de crescimento nesta corrida cósmica, ou talvez tenham tido uma vantagem na velocidade de crescimento que durou bilhões de anos."

Os cientistas descobriram que quase metade dos buracos negros na sua amostra tinham massas estimadas em pelo menos 10 bilhões de vezes a massa do Sol. Isto coloca-os na categoria de buracos negros "ultramassivos".

O trabalho por Mezcua et al. foi publicado na edição de fevereiro de 2018 da revista Monthly Notices of the Royal Astronomical Society. O trabalho por Yang et al. foi aceito para publicação e será divulgado na edição de abril de 2018 da mesma revista.

Fonte: Penn State University

quarta-feira, 21 de fevereiro de 2018

Via Láctea empata com M31 em termos de massa

Astrônomos descobriram que a nossa grande galáxia vizinha mais próxima, a Galáxia de Andrômeda ou M31, tem aproximadamente o tamanho da Via Láctea.

simulação da fusão da Via Láctea com a Galáxia de Andrômeda

© ICRAR (simulação da fusão da Via Láctea com a Galáxia de Andrômeda)

Pensava-se que Andrômeda tinha duas a três vezes o tamanho da Via Láctea, e que a nossa própria Galáxia seria, eventualmente, engolida pela nossa vizinha maior. Mas uma pesquisa mais recente iguala a pontuação das duas galáxias.

A pesquisa descobriu que a massa da M31 equivale a 800 bilhões de vezes a massa do Sol, próximo da Via Láctea. Prajwal Kafle, astrofísico do ICRAR (International Centre for Radio Astronomy Research) da Universidade da Austrália Ocidental, disse que o estudo usou uma nova técnica para medir a velocidade necessária de uma galáxia.

Quando um foguete é lançado para o espaço, é lançado com uma velocidade de 11 km/s a fim de superar a atração gravitacional da Terra. A Via Láctea é mais de um trilhão de vezes mais massiva do que o nosso minúsculo planeta Terra e para escapar à sua atração gravitacional temos que ser lançados com uma velocidade de 550 km/s. Os astrônomos usaram esta técnica para determinar a massa de Andrômeda.

A investigação sugere que os cientistas sobrestimaram a quantidade de matéria escura na Galáxia de Andrômeda. "Ao examinarmos as órbitas de estrelas de alta velocidade, descobrimos que esta galáxia tem muito menos matéria escura do que se pensava anteriormente, apenas um-terço da determinada em observações anteriores," realça o Dr. Kafle.

A Via Láctea e a Galáxia de Andrômeda são duas galáxias espirais gigantes no nosso Universo local e a luz leva uns cosmologicamente minúsculos dois milhões de anos para viajar a distância que as separa.

Agora que a M31 não é considerada a irmã "mais velha" (analogia em termos de tamanho, não idade) da Via Láctea, são necessárias novas simulações para descobrir o que acontecerá quando as duas galáxias eventualmente colidirem.

O Dr. Kafle usou uma técnica semelhante para reavaliar [para baixo] a massa da Via Láctea em 2014 e disse que este último achado teve grandes implicações para a nossa compreensão dos nossos vizinhos galácticos mais próximos.

"Transforma completamente a nossa compreensão do Grupo Local," acrescenta. "Pensávamos que havia esta grande galáxia e que a nossa própria Via Láctea era ligeiramente menor, mas este cenário agora mudou completamente. É realmente emocionante termos sido capazes de encontrar um novo método e, de repente, 50 anos de compreensão coletiva do Grupo Local foram colocados de cabeça para baixo."

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: International Centre for Radio Astronomy Research

terça-feira, 20 de fevereiro de 2018

Swarm investiga acoplamento energético

O Sol banha o nosso planeta com a luz e o calor necessários para sustentar a vida, mas também nos bombardeia com perigosas partículas carregadas através do vento solar.

escudo protetor da Terra

© ESA/ATG medialab (escudo protetor da Terra)

O campo magnético terrestre protege-nos quase totalmente deste ataque. Graças à missão Swarm da ESA, a natureza deste acoplamento Terra-Sol foi revelada com mais detalhes do que nunca.

O campo magnético da Terra é como uma enorme bolha que nos protege da radiação cósmica e das partículas carregadas, transportadas por ventos poderosos que escapam da atração gravitacional do Sol e varrem o Sistema Solar.

O trio de satélites Swarm foi lançado em 2013 para melhorar a nossa compreensão de como o campo magnético é gerado e como este nos protege do bombardeio de partículas carregadas.

Uma vez que o nosso campo magnético é gerado, principalmente, por um oceano de ferro líquido que compõe o núcleo externo do planeta, assemelha-se a um ímã com linhas de campo emergentes perto dos polos.

O campo é altamente condutor e transporta partículas carregadas que fluem ao longo destas linhas de campo, dando origem a correntes alinhadas no campo.

Carregando até 1 TW (terawatts, igual a 1012 watts) de energia elétrica a cada segundo, cerca de seis vezes a quantidade de energia produzida a cada ano pelas turbinas eólicas na Europa, estas correntes são a forma dominante de transferência de energia entre a magnetosfera e a ionosfera.

As telas cintilantes de luz verde e púrpura das auroras, nos céus acima das regiões polares, são uma manifestação visível de energia e partículas que viajam ao longo das linhas do campo magnético.

A teoria sobre o intercâmbio e o impulso entre o vento solar e o nosso campo magnético remonta, na realidade, a mais de 100 anos e, mais recentemente, a rede de satélites ‘Experiência de Resposta da Magnetosfera Ativa e Eletrodinâmica Planetária’ (AMPERE) permitiu que os cientistas estudassem correntes de campo em grande escala.

No entanto, a missão Swarm está levando a uma nova e emocionante onda de descobertas. Um novo estudo explora a dinâmica deste acoplamento energético em diferentes escalas espaciais, e descobre que tudo está nos detalhes.

Ryan McGranaghan, do Jet Propulsion Laboratory da NASA, disse: “Temos uma boa compreensão de como estas correntes trocam energia entre a ionosfera e a magnetosfera em grandes escalas, então assumimos que as correntes de menor escala se comportaram da mesma maneira, mas carregaram proporcionalmente menos energia. A Swarm permitiu-nos ampliar efetivamente estas correntes menores e vemos que, sob certas condições, este não é o caso. As nossas descobertas mostram que estas correntes menores carregam energia significativa e que o seu relacionamento com as correntes maiores é muito complexo. Além disso, correntes grandes e pequenas afetam a magnetosfera-ionosfera de maneira diferente.”

Colin Forsyth, da University College de Londres observou: “Uma vez que as correntes elétricas em torno da Terra podem interferir na navegação e nos sistemas de telecomunicações, esta é uma descoberta importante. Também nos dá uma maior compreensão de como o Sol e a Terra estão ligados e como este acoplamento pode, em última análise, adicionar energia à nossa atmosfera. Este novo conhecimento pode ser usado para melhorar modelos para que possamos entender melhor e, prepararmo-nos para as possíveis consequências das tempestades solares”.

O diretor da missão Swarm da ESA, Rune Floberghagen, acrescentou: “Desde o início da missão, realizamos projetos para abordar o intercâmbio de energia entre a magnetosfera, a ionosfera e a termosfera. Mas o que estamos testemunhando agora é nada menos que uma revisão completa da compreensão de como a Terra responde e interage com a energia vinda do Sol. Na verdade, esta investigação científica está se tornando um pilar fundamental para a missão Swarm alongada, precisamente porque está lançando novas bases e, ao mesmo tempo, tem uma forte relevância social. Agora desejamos explorar este potencial dos satélites Swarm ao máximo.”

Um artigo foi publicado no periódico Journal of Geophysical Research: Space Physics.

Fonte: ESA

segunda-feira, 19 de fevereiro de 2018

Uma beleza solitária

A magnífica galáxia espiral NGC 3344 foi captada pelo telescópio espacial Hubble, permitindo aos astrônomos um olhar detalhado sobre sua estrutura intrincada e elegante.

NGC 3344

© Hubble (NGC 3344)

As galáxias espirais são algumas das vistas mais espetaculares do céu, mas para um observador elas não parecem todas iguais. Algumas são vistas de perfil, dando aos astrônomos uma excelente ideia da estrutura vertical da galáxia; outras são vistas em um ângulo, fornecendo uma dica do tamanho e estrutura dos braços espirais; enquanto outras são vistas de frente, mostrando seus braços e núcleo brilhante com toda sua plenitude.

A galáxia NGC 3344 está a aproximadamente 20 milhões de anos-luz de distância na constelação de Leo Minor. Ela possui metade do tamanho da Via Láctea, e é classificada como uma galáxia espiral fracamente barrada. A barra central é apenas visível nesta imagem, tomada com a Wide Field Camera 3 (WFC3) do Hubble: uma faixa alongada de estrelas, que atravessa o núcleo da galáxia. Os astrônomos estimam que dois terços de todas as galáxias espirais são do tipo barradas, incluindo nossa própria Via Láctea.

A capacidade do Hubble de observar objetos celestiais em diferentes comprimentos de onda nos permite ver mais do que apenas os braços em espiral varrendo vagamente ao redor do centro. Esta imagem é uma composição de imagens tiradas através de diferentes filtros, que vão do ultravioleta próximo, ao óptico e ao infravermelho próximo. Juntos, eles mostram uma imagem mais completa da galáxia do que o olho humano sozinho poderia ver.

Os braços espirais que se arremessam são o local de nascimento de estrelas novas, cujas altas temperaturas tornam-se brilhantes,sendo facilmente identificáveis ​​nesta imagem. Nuvens de poeira e gás distribuídos através dos braços espirais - vermelho incandescente nesta imagem - são reservatórios de material para mais estrelas. As brilhantes estrelas semelhantes a joias à esquerda da imagem, no entanto, estão muito mais próximas da Terra, elas pertencem à nossa própria galáxia.

Embora sua orientação frontal revele muito sobre a estrutura detalhada da NGC 3344, esta galáxia ainda é enigmática; os astrônomos notaram que algumas de suas estrelas externas estão se movendo de uma maneira estranha. Muitas vezes, a alta concentração de estrelas no centro de uma galáxia pode afetar os movimentos das estrelas externas, mas isso não parece ser o caso no NGC 3344. Os astrônomos suspeitam que estas estrelas exteriores que se comportam estranhamente podem ter sido capturadas de outra galáxia, depois de um encontro próximo que aconteceu há muito tempo.

A localização da NGC 3344 também é intrigante. Nossa galáxia é parte do Grupo Local, que é composto por aproximadamente 40 outras galáxias, sendo a Galáxia Andraômeda o maior membro. Mas a NGC 3344 não faz parte de um grupo galáctico local como a Via Láctea. Na verdade, faz parte do Superaglomerado Virgo, uma coleção gigantesca de vários milhares de galáxias.

Mas destaca-se destas milhares de galáxias por causa da sua beleza, evidenciando a elegância do Universo.

Fonte: ESA

O encolhimento do vórtice de Netuno

Netuno, o oitavo e mais distante planeta do Sol, foi visitado pela primeira e última vez pela missão Voyager 2 da NASA em 1989.

evolução do vórtice em Netuno

© Hubble/M.H. Wong/A.I. Hsu (evolução do vórtice em Netuno)

Desde então, o telescópio espacial Hubble tem tentado descobrir a infinidade de mistérios que cercam este majestoso planeta frio, incluindo decifrar por que ele possui os ventos mais rápidos do Sistema Solar, e o que existe no seu centro.

Estas novas imagens do Hubble revelam uma das características mais destacadas da atmosfera estranha de Netuno: uma mancha escura rara ou um vórtice escuro, ou seja, um sistema atmosférico giratório de alta pressão geralmente acompanhado nuvens brilhantes. Este mancha escura particular é chamada de SDS-2015 (Southern Dark Spot descoberta em 2015), e é apenas a quinta observada até agora em Netuno. Embora pareça ser um pouco menor do que as manchas escuras anteriores, as observações da SDS-2015 de 2015 a 2017 revelaram que o local já havia sido grande o suficiente para englobar toda a China antes de diminuir rapidamente de tamanho.

Cada uma das cinco manchas escuras curiosamente são diferentes, mas todas apareceram e desapareceram em apenas poucos anos, ao contrário de vórtices semelhantes em Júpiter que evoluem ao longo de décadas. Nuvens brilhantes se formam ao longo de manchas escuras quando o fluxo de ar ambiente é perturbado e desviado para cima sobre a mancha, fazendo com que os gases congelem em cristais de gelo de metano.

Somente o Hubble é suficientemente poderoso para captar as manchas escuras de Netuno e produzir imagens impressionantes; estas visualizações foram realizadas no decorrer de dois anos usando a Wide Field Camera 3 (WFC3) do Hubble.

Um artigo foi publicado no periódico The Astronomical Journal.

Fonte: ESA

sábado, 17 de fevereiro de 2018

Um toróide de gás e poeira ao redor de um buraco negro supermassivo

Observações de alta resolução com o ALMA (Atacama Large Millimeter/submillimeter Array) captaram um toróide de gás rotativo e empoeirado em torno de um buraco negro supermassivo ativo.

região central da galáxia espiral M77

© Hubble/ALMA (região central da galáxia espiral M77)

O telescópio espacial Hubble fotografou a distribuição das estrelas. O ALMA revelou a distribuição do gás no centro da galáxia. O ALMA fotografou uma estrutura em forma de ferradura com um raio de 700 anos-luz e um componente central compacto com um raio de 20 anos-luz. Este último é o toróide gasoso. O vermelho indica a emissão dos íons formílicos (HCO+) e o verde indica a emissão do cianeto de hidrogênio (HCN).

A existência de tais estruturas giratórias em forma de rosquinha foi sugerida pela primeira vez há algumas décadas, mas esta é a primeira vez que uma foi confirmada tão claramente. Este é um passo importante na compreensão da coevolução de buracos negros supermassivos e das suas galáxias hospedeiras.

Quase todas as galáxias contêm buracos negros monstruosos escondidos nos seus centros. Os pesquisadores sabem há muito tempo que quanto mais massiva é a galáxia, mais massivo é o buraco negro central. Isto parece lógico ao início, mas as galáxias hospedeiras são dez bilhões de vezes maiores que os buracos negros centrais; deveria ser difícil para dois objetos de escalas tão diferentes se afetarem diretamente. Então, como é que se pode desenvolver uma tal relação?

Com o objetivo de resolver este problema sombrio, uma equipe de astrônomos utilizou a alta resolução do ALMA para observar o centro da galáxia espiral M77. A região central da M77 é um núcleo galáctico ativo (NGA), o que significa que a matéria está caindo vigorosamente em direção ao buraco negro supermassivo central e emitindo luz intensa. Os NGAs podem afetar fortemente o ambiente circundante, portanto, são objetos importantes para resolver o mistério da coevolução das galáxias e dos buracos negros.

A equipe fotografou a área ao redor do buraco negro supermassivo da M77 e discerniu uma estrutura gasosa e compacta com um raio de 20 anos-luz. E foi descoberto que a estrutura compacta gira em torno do buraco negro, conforme esperado.

"Para interpretar várias características observacionais dos NGAs, os astrônomos assumiram estruturas giratórias e gasosas em forma de donut e ao redor dos buracos negros supermassivos ativos. Isto é o que se chama de 'modelo unificado' do NGA," explicou Masatoshi Imanishi, do NAOJ (National Astronomical Observatory of Japan). "No entanto, o donut gasoso e empoeirado é muito pequeno em aparência. Com a alta resolução do ALMA, podemos agora ver diretamente a estrutura."

Muitos astrônomos já tinham observado antes o centro da M77, mas nunca tinha a rotação do toróide gasoso sido vista tão nitidamente em torno do buraco negro. Além da resolução superior do ALMA, a seleção das linhas de emissão molecular observadas foi fundamental para revelar a estrutura. A equipe observou a emissão específica de micro-ondas das moléculas de cianeto de hidrogênio e íons formílicos. Estas moléculas emitem micro-ondas apenas em gás denso, enquanto o mais frequentemente observado monóxido de carbono (CO) emite micro-ondas sob várias condições. Assume-se que o toróide em torno do NGA é muito denso.

"As observações anteriores revelaram o alongamento este-oeste do toróide gasoso empoeirado. A dinâmica revelada a partir dos nossos dados ALMA concorda exatamente com a orientação rotacional esperada do toróide," afirma Imanishi.

Curiosamente, a distribuição do gás em torno do buraco negro supermassivo é muito mais complicada do que um modelo unificado simples sugere. O toróide parece ter uma assimetria e a rotação não está apenas seguindo a gravidade do buraco negro, mas também contém um movimento altamente aleatório. Estes fatos podem indicar que o NGA teve uma história violenta, possivelmente incluindo uma fusão com uma pequena galáxia. No entanto, a identificação do toróide giratório é um passo importante.

A Via Láctea, onde vivemos, também tem um buraco negro supermassivo no seu centro. Este buraco negro encontra-se, no entanto, num estado muito calmo. Apenas está acretando uma pequena quantidade de gás. Portanto, para investigar em detalhe um NGA, os astrônomos precisam de observar os centros de galáxias distantes. A M77 tem um dos NGAs mais próximos e é um objeto adequado para examinar o centro em detalhe.

Um artigo foi publicado na revista The Astrophysical Journal Letters.

Fonte: National Astronomical Observatory of Japan