Mostrando postagens com marcador Gigantes Vermelhas. Mostrar todas as postagens
Mostrando postagens com marcador Gigantes Vermelhas. Mostrar todas as postagens

sexta-feira, 7 de julho de 2023

Um planeta que desafia a morte

Quando o nosso Sol chegar ao fim da sua vida, se expandirá até 100 vezes o seu tamanho atual, envolvendo a Terra.

© A. Makarenko (ilustração do sistema Baekdu)

Este é possível cenário em que Baedku que era originalmente um sistema binário composto por uma estrela gigante vermelha em órbita de uma estrela anã branca. A proximidade do par estelar permitiu a transferência de material entre as duas estrelas, levando à sua eventual fusão. O planeta Halla está em primeiro plano, orbitando perigosamente perto, mas suficientemente longe para sobreviver ao impacto da colisão explosiva do par estelar.

Muitos planetas em outros sistemas solares enfrentam um destino semelhante à medida que as suas estrelas hospedeiras envelhecem. Mas nem toda a esperança está perdida: astrônomos do IfA (Institute for Astronomy) da Universidade do Havaí fizeram a notável descoberta da sobrevivência de um planeta após o que deveria ter sido a morte certa devido a sua estrela. 

O planeta semelhante a Júpiter, 8 UMi b, oficialmente chamado Halla, orbita a estrela gigante vermelha Baekdu (8 UMi) a apenas metade da distância que separa a Terra do Sol. Utilizando dois observatórios na ilha do Havaí, o Observatório W. M. Keck e o CFHT (Canada-France-Hawaii Telescope), uma equipe de astrônomos descobriu que Halla persiste apesar da evolução normalmente perigosa de Baekdu. 

Utilizando observações das oscilações estelares de Baekdu feitas pelo TESS (Transiting Exoplanet Survey Satellite) da NASA, descobriram que a estrela está queimando hélio no seu núcleo, o que indica que já se tinha expandido enormemente até se tornar uma estrela gigante vermelha. A estrela teria inchado até 1,5 vezes a distância orbital do planeta, engolindo-o no processo, antes de encolher para o seu tamanho atual a apenas um-décimo desta distância.

O planeta Halla foi descoberto em 2015 por astrônomos da Coreia do Sul utilizando o método da velocidade radial, que mede o movimento periódico de uma estrela devido à força gravitacional do planeta que a orbita. Após a descoberta de que a estrela deve ter sido, em tempos, maior do que a órbita do planeta, a equipe do IfA realizou observações adicionais entre 2021 e 2022 usando o HIRES (High Resolution Echelle Spectrometer) do Observatório Keck e o instrumento ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) do CFHT. 

Estes novos dados confirmaram que a órbita quase circular de 93 dias do planeta permaneceu estável durante mais de uma década e que o movimento para trás e para a frente deve ser devido a um planeta. A uma distância de 0,46 UA (unidades astronômicas, igual a distância Terra-Sol) da sua estrela, o planeta Halla assemelha-se a planetas  "quentes", parecidos a Júpiter, que se pensa terem começado em órbitas maiores antes de migrarem para o interior, perto das suas estrelas. No entanto, face a uma estrela hospedeira em rápida evolução, tal origem torna-se uma via de sobrevivência extremamente improvável para o planeta Halla. 

Outra teoria para a sobrevivência do planeta é o fato de nunca ter enfrentado o perigo de ser engolido. Tal como o famoso planeta Tatooine da saga "Guerra das Estrelas", que orbita dois sóis, a estrela hospedeira Baekdu pode ter sido originalmente duas estrelas, segundo a equipe. A fusão destas duas estrelas pode ter impedido qualquer uma delas de se expandir o suficiente para engolir o planeta. Uma terceira possibilidade é que Halla seja um relativo recém-nascido, que a colisão violenta entre as duas estrelas tenha produzido uma nuvem de gás a partir da qual o planeta se formou. O planeta Halla pode ser um planeta de "segunda geração" nascido recentemente.

Um artigo foi publicado na revista Nature

Fonte: W. M. Keck Observatory

sábado, 3 de junho de 2023

Betelgeuse está quase 50% mais brilhante que o normal

Desde o evento Grande Escurecimento que ocorreu na segunda metade de 2019 e no início de 2020, a estrela gigante vermelha Betelgeuse simplesmente não vai parar com a anormalidade.

© ESO / ALMA (Betelgeuse)

Os ciclos regulares de flutuação de brilho da estrela moribunda mudaram, e agora Betelgeuse tornou-se incomumente brilhante. Há dez dias, ela estava com 142% de seu brilho normal. Tem flutuado para cima e para baixo em pequena escala, mas em uma tendência ascendente constante por meses e atingiu um pico recente de 156% em abril. 

Atualmente, Betelgeuse é a 7ª estrela mais brilhante no céu, acima de sua posição normal como a 10ª mais brilhante, provocando especulações de que Betelgeuse está prestes a explodir em uma espetacular supernova. Infelizmente, provavelmente não é. 

Embora Betelgeuse esteja à beira da morte em escalas de tempo cósmicas, em escalas de tempo humanas, sua supernova pode estar a 100.000 anos de distância. De acordo com os cientistas, é mais provável que seu comportamento atual seja um pouco instável após o escurecimento de 2019, e a estrela retornará ao normal dentro de uma década.

Betelgeuse, localizada a cerca de 700 anos-luz da Terra, é uma das estrelas mais interessantes do céu. Ela paira acima de nós, brilhando como um olho injetado, uma estrela no estágio de gigante vermelha que marca o fim de sua vida. Mas Betelgeuse é um tipo incomum de estrela, mesmo para uma gigante vermelha. 

Era uma vez um monstro absoluto: uma estrela tipo O azul-branca, a classe de peso estelar mais massiva. Estrelas com esta faixa de massa queimam seus estoques de hidrogênio mais rapidamente do que estrelas mais leves; Betelgeuse tem apenas cerca de 8 a 8,5 milhões de anos. Compare isso com uma estrela como o Sol, que com 4,6 bilhões de anos, está apenas na metade de sua vida de queima de hidrogênio. Betelgeuse mudou seu tipo espectral, pois quase esgotou suas reservas de hidrogênio. Agora está fundindo hélio em carbono e oxigênio e expandiu para um tamanho gigantesco: cerca de 764 vezes o tamanho do Sol e cerca de 16,5 a 19 vezes sua massa. 

Eventualmente, ficará sem combustível para queimar, virar supernova, jogar fora seu material externo e seu núcleo entrará em colapso em uma estrela de nêutrons. O evento Grande Escurecimento viu a estrela diminuir o brilho em uma quantidade considerável, quase 25%. Os astrônomos correram para descobrir a causa; descobriu-se que o resfriamento na superfície de Betelgeuse causou a condensação de uma enorme nuvem de poeira na estrela. Esta nuvem foi posteriormente ejetada, obscurecendo parcialmente Betelgeuse, fazendo com que parecesse escurecer. Comportamento bastante normal para uma estrela gigante vermelha. 

Betelgeuse também apresentava flutuações de brilho em ciclos regulares. O mais longo destes ciclos é de cerca de 5,9 anos; outro é de 400 dias. Mas parece que o Grande Escurecimento causou algumas mudanças nestas flutuações. 

Um novo artigo, liderado pelo astrofísico Morgan MacLeod, do Harvard-Smithsonian Center for Astrophysics, descobriu que o ciclo de 400 dias parece ter caído pela metade. Este ciclo de pulsação é impulsionado pela expansão e contração dentro da estrela. De acordo com as simulações conduzidas por MacLeod e seus colegas, uma pluma convectiva dentro de Betelgeuse pode ter surgido, tornando-se o material que se desprende da estrela. Durante o processo, esta ressurgência interrompeu a fase do ciclo de 400 dias, produzindo um ciclo de aproximadamente 200 dias que a estrela está exibindo atualmente. 

Portanto, Betelgeuse ainda está se recuperando do Grande Escurecimento, o que significa que não é improvável que seu brilho atual também esteja relacionado a fatores em andamento. No entanto, a equipe prevê que, eventualmente, a normalidade voltará para Betelgeuse, e continuará vivendo seu crepúsculo de milênios de forma relativamente pacífica por algum tempo.

Fonte: Universe Today

sábado, 21 de janeiro de 2023

Descoberta estrela gigante pulsante

Uma estrela gigante vermelha a milhares de anos-luz de distância “piscou”, escurecendo significativamente por sete longos anos, antes de voltar ao normal.

© A. Tzanidakis (ilustração da estrela Gaia17bpp)

Entre 2012 e 2019, uma estrela gigante vermelha inchada a cerca de 26.000 anos-luz de distância na constelação de Sagitário, a Flecha, foi mais de 60 vezes (4,5 magnitudes) mais fraca do que o normal. 

“As estrelas normalmente não fazem isso”, diz Anastasios Tzanidakis, da Universidade de Washington. Ele e seus colegas acham que o escurecimento extremamente longo e profundo aconteceu quando uma companheira em órbita lenta, cercada por um enorme disco de poeira absorvente, bloqueou a luz da gigante vermelha. 

O comportamento estranho da estrela foi detectado pela primeira vez pela missão Gaia da Agência Espacial Europeia (ESA). Em 2017, quatro anos após seu lançamento, Gaia viu como a estrela, agora conhecida como Gaia17bpp, começou a brilhar de magnitude 20,5 atingindo magnitude 16 em 2019. No ano passado, Tzanidakis e seus colegas verificou os dados existentes de outros telescópios para confirmar que o eclipse longo e profundo havia começado em 2012. Observações arquivadas ainda mais antigas revelaram que Gaia17bpp não mostrou nenhum outro comportamento inesperado desde 1950. 

Então, o que pode fazer com que uma estrela gigante vermelha se torne mais de 60 vezes mais escura por sete anos a fio? De acordo com a equipe, a única explicação viável é um enorme disco de material absorvente, com algumas centenas de milhões de quilômetros de diâmetro, em torno de uma fraca estrela companheira que está em uma órbita de séculos ao redor da gigante vermelha. O disco pode consistir em poeira soprada para o espaço pela estrela gigante e posteriormente capturada por sua companheira, ou pode ser um disco de detritos pertencente a uma estrela anã branca.

No ano passado, Guillermo Torres, do Centro de Astrofísica Harvard-Smithsonian (CfA) e seu colega Kristy Sakano relataram a descoberta de uma “companheira empoeirada” semelhante orbitando a estrela brilhante Eta (η) Geminorum a cada 8,2 anos. 

Um exemplo muito mais conhecido é o Epsilon (ε) Aurigae, que experimenta eclipses de dois anos a cada 27 anos. No caso de Gaia17bpp, no entanto, o período orbital deve estar na escala de séculos, dada a longa duração do evento. 

Captar os eclipses à medida que ocorrem ajudará a identificar a composição do material absorvente, pois deixará uma impressão digital espectroscópica reveladora na luz da estrela. Eventualmente, os astrônomos também esperam aprender como estes estranhos sistemas binários surgem em primeiro lugar.

Fonte: Astronomy

quarta-feira, 20 de abril de 2022

Algumas estrelas gigantes vermelhas apresentam perda de peso

Astrônomos da Universidade de Sydney encontraram pela primeira vez um tipo menos massivo de estrela gigante vermelha.

© NASA/M. Weiss (estrela gigante vermelha transfere massa para anã branca)

Estas estrelas sofreram uma dramática perda de peso, possivelmente devido a uma companheira estelar gananciosa. A descoberta é um passo importante para compreender a vida das estrelas na Via Láctea, as nossas vizinhas mais próximas. 

Existem milhões de estrelas gigantes vermelhas na nossa Galáxia. Estes objetos luminosos e menos quentes são o que o nosso Sol se tornará dentro de quatro bilhões de anos. Há já algum tempo que os astrônomos preveem a existência de gigantes vermelhas menos massivas. Depois de terem encontrado cerca de 40 gigantes vermelhas menos massivas, escondidas num mar de gigantes normais, a equipe da Universidade de Sydney pode finalmente confirmar a sua existência. Estas gigantes vermelhas são menores em tamanho ou menos massivas do que as gigantes vermelhas normais.

Como e porque é que emagreceram? A maioria das estrelas no céu pertencem a sistemas binários, ou seja, duas estrelas ligadas gravitacionalmente uma à outra. Quando as estrelas em binários íntimos incham, à medida que as estrelas envelhecem, algum material pode alcançar a esfera gravitacional da sua companheira e ser sugado.

A equipe analisou dados de arquivo do telescópio espacial Kepler da NASA. De 2009 a 2013, o telescópio registou continuamente variações de luminosidade em dezenas de milhares de gigantes vermelhas. Utilizando este conjunto de dados incrivelmente preciso e grande, foi realizado um censo minucioso desta população estelar, fornecendo as bases para detectar tais objetos. 

Foram revelados dois tipos incomuns de estrelas: gigantes vermelhas de massa muito baixa e gigantes vermelhas subluminosas (de brilho inferior). As estrelas de massa muito baixa têm apenas 0,5 a 0,7 massas solares, cerca de metade da massa do nosso Sol. Se as estrelas de massa muito baixa não tivessem perdido massa de repente, as suas massas indicariam que eram mais velhas do que a idade do Universo, caracterizando uma impossibilidade. As estrelas subluminosas, por outro lado, têm massas normais, que vão de 0,8 a 2,0 massas solares. Contudo, são mais tênues, por isso são subluminosas em comparação com as gigantes vermelhas normais. Apenas foram encontradas sete estrelas subluminosas, sendo possível que muitas mais estão escondidas na amostra.

Estes pontos de dados incomuns não podiam ser explicados por simples expectativas da evolução estelar. Isto levou os pesquisadores a concluir que outro mecanismo deve estar em ação, forçando estas estrelas a sofrer uma dramática perda de peso: o roubo de massa por estrelas próximas.

Os astrônomos apoiaram-se na asterosismologia - o estudo das vibrações estelares - para determinar as propriedades das gigantes vermelhas. Os métodos tradicionais para estudar uma estrela estão limitados às suas propriedades de superfície, por exemplo, a temperatura e luminosidade da superfície. Em contraste, a asterosismologia, que utiliza ondas sonoras, estuda o que está abaixo. As ondas penetram o interior estelar, fornecendo informações ricas sobre outra dimensão.

Os pesquisadores conseguiram determinar com precisão as fases evolutivas, massas e tamanhos das estrelas com este método. E quando olharam para as distribuições destas propriedades, algo fora do comum foi imediatamente visto: algumas estrelas têm massas pequenas ou tamanhos pequenos.

A descoberta foi publicada na Nature Astronomy.

Fonte: University of Sydney

terça-feira, 11 de janeiro de 2022

Uma estrela moribunda com final explosivo

Pela primeira vez, os astrônomos viram em "tempo real" o fim dramático da vida de uma supergigante vermelha, observando a rápida autodestruição e morte da estrela antes de se transformar numa supernova do Tipo II.

© A. Makarenko (ilustração de estrela supergigante vermelha)

Usando dois telescópios no Havaí, o Pan-STARRS do Instituto de Astronomia da Universidade do Hawai'i em Haleakalā, Maui e o Observatório W. M. Keck em Maunakea, Havaí, astrônomos que trabalhavam no levantamento YSE (Young Supernova Experiment) observou a supergigante vermelha durante os seus últimos 130 dias, que culminou na sua detonação mortal.

A detecção direta de atividade pré-supernova numa estrela supergigante vermelha nunca tinha sido observada antes numa supernova comum do Tipo II. Pela primeira vez, é vista uma estrela supergigante vermelha explodir!" 

O Pan-STARRS detectou pela primeira vez a estrela massiva condenada no verão de 2020 graças à enorme quantidade de luz que irradiava. Alguns meses mais tarde, no outono de 2020, uma supernova iluminou o céu. A equipe rapidamente captou o poderoso flash e obteve o primeiro espectro da explosão energética, denominada SN 2020tlf, usando o instrumento LRIS (Low Resolution Imaging Spectrometer) do observatório Keck. 

Os dados mostraram evidências diretas de material circunstelar denso ao redor da estrela no momento da explosão, provavelmente o mesmo gás que o Pan-STARRS tinha fotografado sendo ejetado violentamente no início do verão.

A equipe continuou monitorando a SN 2020tlf após a explosão; com base nos dados obtidos pelos instrumentos DEIMOS (DEep Imaging and Multi-Object Spectrograph) e NIRES (Near Infrared Echellette Spectrograph) do observatório Keck, determinaram que a supergigante vermelha progenitora de SN 2020tlf, localizada na galáxia NGC 5731, a cerca de 120 milhões de anos-luz de distância, era 10 vezes mais massiva do que o Sol. 

A descoberta desafia as ideias anteriores de como as estrelas supergigantes vermelhas evoluem mesmo antes de explodirem. Antes deste evento, todas as supergigantes vermelhas observadas antes da explosão estavam relativamente quiescentes: não mostravam qualquer evidência de erupções violentas ou emissão luminosa, como foi observado antes de SN 2020tlf. Contudo, esta nova detecção de radiação luminosa proveniente de uma supergigante vermelha no seu último ano antes da explosão sugere que pelo menos algumas destas estrelas devem sofrer alterações significativas na sua estrutura interna, o que resulta então na ejeção tumultuosa de gás momentos antes do seu colapso.

A descoberta abre um caminho para levantamentos transientes como o YSE para buscar radiação luminosa proveniente de supergigantes vermelhas, e para reunir mais evidências de que tal comportamento pode assinalar a destruição iminente de uma estrela massiva. 

A detecção de mais eventos como SN 2020tlf terá um impacto relevante na definição dos meses finais da evolução estelar.

A descoberta foi publicada no periódico The Astrophysical Journal.

Fonte: W. M. Keck Observatory

sexta-feira, 13 de agosto de 2021

Coleção de estrelas gigantes vermelhas pulsantes

Usando observações do TESS (Transiting Exoplanet Survey Satellite) da NASA, os astrônomos identificaram uma coleção sem precedentes de estrelas gigantes vermelhas pulsantes por todo o céu.

© NASA/Chris Smith (ilustração de estrelas gigantes vermelhas)

Estas estrelas, cujos ritmos surgem de ondas sonoras internas, fornecem os acordes iniciais de uma exploração sinfônica da nossa vizinhança galáctica. O TESS caça principalmente mundos localizados além do nosso Sistema Solar, também conhecidos como exoplanetas.

Mas as suas medições sensíveis do brilho estelar tornam o TESS ideal para estudar oscilações estelares, uma área de pesquisa chamada asterosismologia. "O nosso resultado inicial, usando medições estelares ao longo dos primeiros anos do TESS, mostra que podemos determinar as massas e os tamanhos destas gigantes oscilantes com uma precisão que só vai melhorar à medida que o TESS avança," disse Marc Hon, associado do telescópio espacial Hubble na Universidade do Havaí em Honolulu. "O que é realmente aqui incomparável é que a ampla cobertura do TESS permite-nos fazer estas medições uniformemente em quase todo o céu." 

As ondas sonoras que viajam através de qualquer objeto, uma corda de violão, um tubo de órgão ou o interior da Terra e do Sol, podem refletir e interagir, reforçando algumas ondas e cancelando outras. Isto pode resultar num movimento ordenado chamado ondas estacionárias, que criam os tons nos instrumentos musicais.

Logo abaixo da superfície de estrelas como o Sol, o gás quente sobe, arrefece e depois desce, onde é aquecido novamente, como uma panela de água fervendo num fogão. Este movimento produz ondas de mudança de pressão, gerando ondas sonoras, que interagem, em última análise conduzindo oscilações estáveis com períodos de alguns minutos que produzem mudanças sutis de brilho.

Para o Sol, estas variações totalizam algumas partes por milhão. Estrelas gigantes com massas semelhantes à do Sol pulsam muito mais devagar e as alterações de brilho correspondentes podem ser centenas de vezes maiores.

As oscilações no Sol foram observadas pela primeira vez na década de 1960. As oscilações do tipo solar foram detectadas em milhares de estrelas pelo telescópio espacial francês CoRoT (Convection, Rotation and planetary Transits), que operou de 2006 a 2013. As missões Kepler e K2 da NASA, que estudaram o céu de 2009 a 2018, descobriram dezenas de milhares de gigantes oscilantes. Agora, o TESS aumenta este número em mais de 10 vezes.

São as diferenças físicas entre um violoncelo e um violino que produzem os seus sons distintos. Da mesma forma, as oscilações estelares dependem da estrutura interna, da massa e do tamanho de cada estrela. Isto significa que a asterosismologia pode ajudar a determinar propriedades fundamentais para um grande número de estrelas com precisões não alcançáveis de outra forma. 

Quando estrelas semelhantes em massa ao Sol evoluem para gigantes vermelhas, a penúltima fase das suas vidas estelares, as suas camadas externas expandem 10 vezes ou mais. Estes vastos invólucros gasosos pulsam com períodos mais longos e amplitudes maiores, o que significa que as suas oscilações podem ser observadas em estrelas mais fracas e mais numerosas. 

As imagens obtidas pelo TESS foram usadas para desenvolver curvas de luz (gráficos de mudança de brilho) para quase 24 milhões de estrelas ao longo de 27 dias, o tempo que o TESS olha fixamente para cada zona do céu. Para filtrar esta imensa acumulação de medições e identificação de gigantes pulsantes, foi usada aprendizagem de máquina, uma forma de inteligência artificial que treina computadores a tomar decisões com base em padrões gerais. Para treinar o sistema, a equipe usou curvas de luz do Kepler para mais de 150.000 estrelas, das quais cerca de 20.000 eram gigantes vermelhas oscilantes. Quando a rede neural terminou de processar todos os dados TESS, tinha identificado 158.505 gigantes pulsantes. 

Em seguida, a equipe determinou as distâncias para cada gigante usando dados da missão Gaia da ESA, e traçou as massas destas estrelas no céu. Estrelas mais massivas do que o Sol evoluem mais depressa, tornando-se gigantes em idades mais jovens. Uma previsão fundamental na astronomia galáctica é que estrelas mais jovens e de maior massa deveriam estar mais próximas do plano da Galáxia, que é marcado pela alta densidade de estrelas que criam a faixa brilhante da Via Láctea no céu noturno.

Um artigo que descreve as descobertas foi aceito para publicação no periódico The Astrophysical Journal.

Fonte: NASA

quarta-feira, 8 de julho de 2020

Quando uma estrela supergigante engole uma estrela morta

Quase meio século atrás, o físico Kip Thorne, ganhador do Prêmio Nobel de 2017, e a astrônoma Anna Żytkow sugeriram que uma estrela estranha, poderia estar escondida no cosmos, apenas esperando ser encontrada por quem soubesse procurar isto. Os astrônomos denominaram esses híbridos estelares teóricos de objetos Thorne-Żytkow.


© Astronomy (ilustração de objeto Thorne-Żytkow)

A possível existência de objetos Thorne-Żytkow (TZOs) veio à tona quando seus pesquisadores homônomos fizeram simulações em computador. Foi descoberto que uma estrela de nêutrons - um minúsculo remanescente estelar ultra-denso deixado para trás quando uma estrela se torna supernova - poderia ser devorada por uma estrela supergigante vermelha.

De acordo com as simulações, se as estrelas se aproximarem demais, em vez de uma estrela ser ejetada, as duas estrelas poderão se fundir. A estrela de nêutrons de massa solar do tamanho de uma cidade continuaria vivendo dentro de seu hospedeiro muito maior, quase como um parasita cósmico. Mas mesmo que a física realmente permita a existência de tais estrelas, encontrá-las será difícil.

Em um estudo publicado em 1975 no periódico Astrophysical Journal, Thorne e Żytkow sugeriram que essas estrelas pareceriam quase idênticas às supergigantes vermelhas como Betelgeuse na constelação de Órion. Estrelas supergigantes são relativamente comuns e são algumas das maiores e mais jovens do Universo. Os objetos TZOs seriam muito semelhantes aos supergigantes vermelhos, mas suspeita-se que sobrevivam até 10 vezes mais.

As supergigantes vermelhas comuns, como outras estrelas, são alimentadas por fusão nuclear em seus núcleos. Então, quando essa energia se esgota, a gravidade contida leva a implodir antes de irromper como uma supernova. Mas os TZOs podem viver vidas tão longas porque não dependem da fusão nuclear sustentada em seus núcleos para evitar o colapso. Em vez disso, o núcleo da estrela de nêutrons de uma TZO, que já é extremamente compactada, evita amplamente o colapso gravitacional rápido das camadas circundantes.

Os astrônomos têm duas teorias diferentes sobre como os TZOs se formam, e ambos dependem dos objetos iniciais que começam suas vidas como duas estrelas gigantes em um sistema binário próximo. Em uma teoria, a maior das duas estrelas explodiria como uma supernova primeiro, deixando para trás uma estrela de nêutrons. Mas com o tempo, a supergigante restante continuaria a crescer para fora até engolir completamente o restante da estrela de nêutrons nas proximidades.

Outra possibilidade para a formação de TZOs é que, quando uma estrela explode como uma supernova assimétrica, seu núcleo remanescente pode receber um poderoso impulso. Isso poderia potencialmente disparar a estrela de nêutrons nas entranhas da gigante vermelha restante.

Mas não importa como elas se formem, os astrônomos anunciaram em 2014 que podem ter descoberto o primeiro objeto Thorne-Żytkow. A estrela estava escondida a cerca de 200.000 anos-luz de distância na Pequena Nuvem de Magalhães, uma galáxia anã que orbita a Via Láctea.

Foi encontrado pela astrônoma Emily Levesque, agora na Universidade de Washington, com a ajuda de sua equipe de pesquisadores. Para encontrar a suspeita de TZO, o grupo de Levesque usou o Observatório Apache Point do Novo México para estudar duas dúzias de estrelas supergigantes vermelhas na Via Láctea, bem como um dos telescópios Magalhães no Chile para estudar outro grupo de supergigantes na Pequena Nuvem de Magalhães.

Ao revisar os dados, uma estrela em particular se destacou. O sistema, denominado HV 2112, foi inicialmente catalogado como variável em 1908 pela pioneira astrônoma Henrietta Swan Leavitt. Na época, porém, pensava-se que era uma supergigante vermelha vivendo seus dias de morte antes de se tornar uma supernova.

No entanto, mais de 100 anos depois que Leavitt notou pela primeira vez o objeto estranho, a análise de Levesque e sua equipe revelou assinaturas químicas incomuns que eles pensavam serem os sinais reveladores de um objeto mítico de Thorne-Żytkow. Os pesquisadores viram quantidades excessivas de lítio, cálcio e outros elementos, que eles só poderiam explicar através das reações nucleares únicas que ocorreriam dentro de um TZO.

Mas eles não podiam ter certeza absoluta; a HV 2112 também parecia ter outras impressões digitais químicas estranhas que não eram esperadas. Com base nesses mistérios restantes, a equipe sugere que os modelos teóricos não apreciaram completamente as nuances dos objetos Thorne-Żytkow ou a HV 2112 simplesmente não era um TZO.

A natureza bizarra da descoberta provocou manchetes na época. Mas para os astrônomos, também foi uma descoberta importante porque ofereceu evidências para estrelas movidas por processos além da fusão nuclear.

Mas quatro anos depois, em 2018, outro grupo de astrônomos alavancou novos detalhes para essa descoberta única. Eles fizeram sua própria análise da HV 2112 e a compararam com estrelas semelhantes, mas não encontraram os mesmos níveis de excesso de cálcio ou outros elementos detectados pela equipe de Levesque. A nova análise mostrou um excesso de lítio, mas, além disso, os resultados sugeriram que essa estrela era basicamente uma supergigante vermelha comum.

Embora a equipe possa ter frustrado os sonhos da HV 2112 de ser diferente, eles ofereceram a esperança de um candidato substituto. Foi encontrado outro possível objeto Thorne-Żytkow, catalogado como HV 11417, que exibia alguns sinais reveladores que os astrônomos previam que os objetos devessem ter.

Um aspecto que as duas equipes concordam é que, quando se trata de objetos de Thorne-Żytkow, tanto a teoria quanto a observação ainda têm um longo caminho a percorrer.

Fonte: Astronomy

domingo, 21 de junho de 2020

Atmosfera supergigante de Antares revelada por radiotelescópios

Uma equipe internacional de astrônomos criou o mapa mais detalhado até agora da atmosfera da supergigante vermelha Antares.


© NRAO (ilustração da atmosfera de Antares)

A sensibilidade e a resolução sem precedentes do ALMA (Atacama Large Millimeter/submillimeter Array) e do VLA (Karl G. Jansky Very Large Array) revelaram o tamanho e a temperatura da atmosfera de Antares logo acima da superfície da estrela, em toda a sua cromosfera e até à região dos ventos.

As estrelas supergigantes vermelhas, como Antares e a sua prima mais conhecida, Betelgeuse, são estrelas enormes e relativamente frias no final da sua vida. Estão ficando sem combustível, para colapsar e se tornarem supernovas. Através dos seus vastos ventos estelares, lançam elementos pesados para o espaço, desempenhando assim um papel importante no fornecimento de elementos essenciais para a vida no Universo. Mas o modo como estes ventos enormes são lançados permanece um mistério. Um estudo detalhado da atmosfera de Antares, a estrela supergigante mais próxima da Terra, fornece um passo crucial em direção a uma resposta.

O mapa de Antares pelo ALMA e pelo VLA é o mapa de rádio mais detalhado alguma vez feito para qualquer estrela, à exceção do Sol. O ALMA observou Antares perto da sua superfície (a sua fotosfera óptica) em comprimentos de onda mais curtos, e os comprimentos de onda mais longos observados pelo VLA revelaram a atmosfera ainda mais distante da estrela. Vista no visível, o diâmetro de Antares é aproximadamente 700 vezes maior que o Sol. Mas quando o ALMA e o VLA revelaram a sua atmosfera no rádio, a supergigante tornou-se ainda mais gigantesca.

"O tamanho de uma estrela pode variar drasticamente, dependendo do comprimento de onda da luz observada," explicou Eamon O'Gorman do Instituto de Estudos Avançados de Dublin, na Irlanda. "Os comprimentos de onda mais longos do VLA revelaram que a atmosfera da supergigante tem quase 12 vezes o raio da estrela."

Os radiotelescópios mediram a temperatura da maior parte do gás e do plasma na atmosfera de Antares. O mais notável foi a temperatura na cromosfera. Esta é a região acima da superfície da estrela que é aquecida por campos magnéticos e ondas de choque criadas pela vigorosa convecção à superfície estelar, parecida ao movimento de bolhas numa panela com água fervendo. Não se sabe muito sobre cromosferas e é a primeira vez que esta região é detectada no rádio.

Graças ao ALMA e ao VLA, os cientistas descobriram que a cromosfera da estrela se estende até 2,5 vezes o raio de Antares (a cromosfera do nosso Sol tem apenas 1/200 vezes o seu raio). Também descobriram que a temperatura da cromosfera é mais baixa do que as observações ópticas e ultravioletas anteriores sugeriram. A temperatura atinge um pico de 3.500 ºC, após o qual diminui gradualmente. Como comparação, a cromosfera do Sol atinge temperaturas de quase 20.000 ºC.

"Descobrimos que a cromosfera é 'morna' e não quente, em temperaturas estelares," disse O'Gorman. "A diferença pode ser explicada porque as nossas medições de rádio são um termômetro sensível para a maior parte do gás e do plasma na atmosfera da estrela, enquanto observações ópticas e ultravioletas anteriores eram sensíveis apenas a gás e plasma muito quentes."

"Pensamos que as estrelas supergigantes vermelhas, como Antares e Betelgeuse, têm uma atmosfera não homogênea," disse Keiichi Ohnaka, da Universidade Católica do Norte no Chile, que anteriormente observou a atmosfera de Antares no infravermelho. "Imagine que as suas atmosferas são pinturas feitas de muitos pontos de cores diferentes, representando temperaturas diferentes. A maior parte da pintura contém pontos de gás morno que os radiotelescópios podem ver, mas também existem pontos frios que só os telescópios infravermelhos podem observar, e pontos quentes que os telescópios ultravioletas veem. De momento, não podemos observar estes pontos individualmente, mas queremos tentar fazer isso em estudos futuros."

Nos dados do ALMA e do VLA, os astrônomos viram pela primeira vez uma clara distinção entre a cromosfera e a região onde os ventos começam a formar-se. Na imagem do VLA, é visível um enorme vento, ejetado de Antares e iluminado pela sua estrela companheira menor, porém mais quente, Antares B.

"A nossa compreensão inata do céu noturno é que as estrelas são apenas pontos de luz. O fato de podermos mapear as atmosferas destas estrelas supergigantes em detalhe é um verdadeiro testemunho dos avanços tecnológicos da interferometria. Estas potentes observações aproximam-nos do Universo," disse Chris Carilli do NRAO (National Radio Astronomy Observatory), que esteve envolvido nas primeiras observações de Betelgeuse em vários comprimentos de onda de rádio com o VLA em 1998.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: National Radio Astronomy Observatory

quarta-feira, 29 de abril de 2020

Estrela sobrevive ao aproximar de buraco negro gigante

Os astrônomos podem ter descoberto um novo tipo de história de sobrevivência: uma estrela que teve um encontro próximo com um buraco negro gigante e sobreviveu para contar a narrativa através de emissões de raios X.


© NASA/M. Weiss (ilustração do buraco negro e da anã branca)

Dados do observatório de raios X Chandra da NASA e do XMM-Newton da ESA descobriram a história que começou com uma gigante vermelha que passou demasiado perto de um buraco negro supermassivo numa galáxia a cerca de 250 milhões de anos-luz da Terra. O buraco negro, localizado numa galáxia chamada GSN 069, tem uma massa de cerca de 400.000 vezes a do Sol, colocando-o na extremidade inferior da gama dos buracos negros supermassivos.

Assim que a gigante vermelha foi capturada pela gravidade do buraco negro, as camadas externas da estrela contendo hidrogênio foram arrancadas e levadas para o buraco negro, deixando o núcleo da estrela - conhecido como anã branca - para trás.

"Na minha interpretação dos dados de raios X, a anã branca sobreviveu, mas não escapou," disse Andrew King, da Universidade de Leicester, Reino Unido, que realizou este estudo. "Agora está presa numa órbita elíptica em torno do buraco negro, completando uma viagem aproximadamente a cada nove horas."

À medida que a anã branca faz quase três órbitas por cada dia terrestre, o buraco negro retira material na sua maior aproximação (a não mais do que 15 vezes o raio do horizonte de eventos do buraco negro). O detrito estelar entra num disco em torno do buraco negro e libera um surto de raios X que o Chandra e o XMM-Newton podem detectar. Além disso, é previsto que ondas gravitacionais serão emitidas pelo par constituído pelo buraco negro e pela anã branca, especialmente no seu ponto mais próximo.

Qual será o futuro da estrela e da sua órbita? O efeito combinado das ondas gravitacionais e uma mudança no tamanho da estrela à medida que perde massa deverá fazer com que a órbita se torne mais circular e cresça em tamanho. O ritmo de perda de massa diminui constantemente, assim como a distância da anã branca ao buraco negro aumenta.

"Vai esforçar-se para fugir, mas não há escapatória. O buraco negro vai devorar a anã branca cada vez mais lentamente, mas nunca parará," disse King. "Em princípio, esta perda de massa vai continuar até e mesmo depois da anã branca desvanecer até à massa de Júpiter, daqui a um trilhão de anos. Esta seria uma maneira notavelmente lenta e complicada do Universo formar um planeta!"

Os astrônomos encontraram muitas estrelas que foram completamente destruídas por encontros com buracos negros através dos eventos de perturbação de maré, mas há muito poucos casos relatados desta maneira, onde a estrela provavelmente sobreviveu.

Encontros próximos como este devem ser mais comuns do que colisões diretas, dadas as estatísticas dos padrões de tráfego cósmico, mas podem ser facilmente não observados por várias razões. Primeiro, uma estrela sobrevivente mais massiva pode demorar demasiado tempo a concluir uma órbita em torno do buraco negro para se observar surtos repetidos. Outra questão é que os buracos negros supermassivos que são muito mais massivos do que o situado na galáxia GSN 069 podem engolir diretamente uma estrela, em vez desta cair para órbitas onde perde massa periodicamente.

A anã branca tem uma massa de apenas dois-décimos da massa do Sol. Se a anã branca era o núcleo da gigante vermelha que foi completamente despojada do seu hidrogênio, deverá ser rica em hélio. O hélio teria sido criado pela fusão de átomos de hidrogênio durante a evolução da gigante vermelha.

Dado que a anã branca está tão perto do buraco negro, os efeitos da Teoria da Relatividade Geral significam que a direção do eixo da órbita deve apresentar precessão. Esta oscilação deve repetir-se a cada dois dias e pode ser detectável com observações suficientemente longas.

O artigo que descreve estes resultados foi publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Harvard-Smithsonian Center for Astrophysics

domingo, 16 de fevereiro de 2020

Superfície de Betelgeuse está diminuindo de brilho

Com o auxílio do Very Large Telescope (VLT) do ESO, os astrônomos captaram a diminuição de brilho de Betelgeuse, uma estrela supergigante vermelha localizada na constelação de Órion.



© ESO/VLT (queda de brilho Betelgeuse)


A imagem acima mostra a estrela Betelgeuse antes e depois da diminuição de brilho, respectivamente, em Janeiro de 2019 e Dezembro de 2019.

As novas imagens da superfície da estrela mostram não apenas a supergigante vermelha diminuindo seu brilho mas também a variação da sua forma aparente.

Betelgeuse tem sido um farol no céu noturno para os observadores estelares, no entanto durante o último ano temos assistido a uma diminuição do seu brilho. Neste momento Betelgeuse apresenta cerca de 36% do seu brilho normal, uma variação considerável, visível até a olho nu. Entusiastas da astronomia e cientistas esperavam descobrir o porquê desta diminuição de brilho sem precedentes. 

Uma equipe liderada por Miguel Montargès, astrônomo na KU Leuven, Bélgica, observa a estrela com o VLT desde dezembro, com o objetivo de entender por que é que ela está se tornando mais fraca. Entre as primeiras observações da campanha está uma imagem da superfície de Betelgeuse, obtida no final do ano passado com o instrumento SPHERE. 

A equipe também observou a estrela com o SPHERE em janeiro de 2019, antes da diminuição do seu brilho, nos dando assim uma imagem do antes e do depois de Betelgeuse. Obtidas no óptico, as imagens destacam as mudanças que ocorreram na estrela, tanto em brilho como em forma aparente. 

Muitos entusiastas da astronomia se perguntam se esta diminuição de brilho da Betelgeuse significa que a estrela está prestes a explodir. 

Tal como todas as supergigantes, um dia Betelgeuse se transformará numa supernova, no entanto os astrônomos não pensam que isso esteja acontecendo agora. Existem outras hipóteses para explicar o que exatamente está causando as variações em forma e brilho observadas nas imagens SPHERE. 

“Os dois cenários em que estamos trabalhando são o resfriamento da superfície devido a atividade estelar excepcional ou ejeção de poeira na nossa direção,” explica Montargès. “Claro que o nosso conhecimento de supergigantes vermelhas é ainda incompleto e este é um trabalho em curso, por isso podemos ainda ter algumas surpresas.” 

A superfície irregular de Betelgeuse é composta por células convectivas gigantes que se movem, diminuem e aumentam de tamanho. A estrela apresenta também pulsações, tal como o bater de um coração, variando em brilho periodicamente. Estas alterações de convecção e pulsação em Betelgeuse são chamadas de atividade estelar.

Montargès e a sua equipe usaram o VLT instalado no Cerro Paranal, no Chile, para estudar a estrela, que fica a mais de 700 anos-luz de distância da Terra, e tentar encontrar pistas que apontem para o porquê da diminuição do seu brilho. 

“O Observatório do Paranal do ESO é uma das poucas instalações capazes de obter imagens da superfície de Betelgeuse,” diz Montargès. Os instrumentos montados no VLT permitem efetuar observações  desde o visível ao infravermelho médio, o que significa que os astrônomos podem observar tanto a superfície da estrela como o material que a circunda. “Esta é a única maneira de compreendermos o que está acontecendo nesta estrela.” 

Outra nova imagem, obtida com o instrumento VISIR montado no VLT, mostra a radiação infravermelha emitida pela poeira que circundava a Betelgeuse em dezembro de 2019. Estas observações foram realizadas por uma equipe liderada por Pierre Kervella do Observatório de Paris, França, que explicou que o comprimento de onda captado nesta imagem é semelhante ao detectado por câmaras que detectam calor. As nuvens de poeira, que se assemelham a chamas na imagem VISIR, se formam quando a estrela lança a sua matéria para o espaço. 

A frase “somos todos feitos de poeira estelar” é algo que ouvimos muito na astronomia popular, mas de onde é que exatamente vem esta poeira? Ao longo das suas vidas, as supergigantes vermelhas, como a Betelgeuse, criam e ejetam enormes quantidades de material ainda antes de explodirem sob a forma de supernovas. A tecnologia moderna nos permite estudar estes objetos, situados a centenas de anos-luz de distância de nós, com um detalhe sem precedentes, nos dando a oportunidade de desvendar o mistério que dá origem a esta perda de massa. 

Fonte: ESO

quarta-feira, 5 de fevereiro de 2020

O confronto de duas estrelas

Os astrônomos descobriram uma peculiar nuvem de gás que resultou do confronto entre duas estrelas. Uma das estrelas cresceu tanto que engoliu a outra que, por sua vez, espiralou em direção à sua companheira levando-a a liberar as suas camadas mais exteriores.


© ESO/ALMA (sistema estelar duplo HD101584)

As estrelas modificam-se com a idade, acabando por morrer. No caso do Sol e de outras estrelas como a nossa, esta modificação passa por uma fase em que, depois de queimar todo o hidrogênio em seu núcleo, ela se transforma em uma grande e brilhante estrela gigante vermelha. Eventualmente, a estrela moribunda perde as suas camadas externas, deixando para trás seu núcleo quente e denso ao qual chamamos anã branca.

“O sistema estelar HD101584 é especial no sentido em que o seu ‘processo de morte' terminou prematuramente de forma dramática quando uma companheira de pequena massa bastante próxima se viu engolida pela gigante vermelha,” explica Hans Olofsson da Universidade de Tecnologia Chalmers, na Suécia, que liderou um estudo recente sobre este objeto intrigante.

Graças às novas observações obtidas pelo ALMA (Atacama Large Millimeter/submillimeter Array) e complementadas com dados do APEX (Atacama Pathfinder EXperiment), operado pelo ESO, Olofsson e a sua equipe sabem agora que o que aconteceu ao sistema estelar duplo HD101584 foi semelhante a uma luta estelar. Quando a estrela principal se transformou em uma gigante vermelha, cresceu tanto que acabou por engolir a sua parceira de menor massa. Como resultado, a estrela menor espiralou em direção ao núcleo da gigante, mas não colidiu com ele. Em vez disso, essa manobra desencadeou uma explosão na estrela maior, deixando as suas camadas de gás espalhadas e o seu núcleo exposto.

A equipe diz que a estrutura complexa do gás observada na nebulosa HD101584 se deve a uma estrela pequena espiralando em direção à gigante vermelha, assim como aos jatos que se formaram no processo. Tal como um golpe mortal desferido às camadas de gás já vencidas, estes jatos foram lançados através do material ejetado anteriormente, dando origem aos anéis de gás e às brilhantes bolhas azuladas e avermelhadas que vemos na nebulosa.

Esta colisão possibilita uma compreensão melhor da evolução final de estrelas como o Sol. “Atualmente, conseguimos descrever os processos de morte comuns a muitas estrelas do tipo do Sol, mas não conseguimos explicar o seu porquê ou exatamente como é que acontecem. A HD101584 nos dá pistas importantes para resolver este quebra-cabeça, já que atualmente se encontra em uma curta fase de transição entre estágios evolucionários que conhecemos melhor. Com imagens detalhadas do meio que envolve a HD101584, podemos fazer a ligação entre a gigante vermelha que existia anteriormente e o remanescente estelar que em breve se tornará,” explica Sofia Ramstedt, da Universidade de Uppsala, na Suécia.

Esta imagem extraordinária do meio circunstelar da HD101584 não teria sido possível sem a excelente sensibilidade e resolução angular do ALMA.

Enquanto os telescópios atuais permitem aos astrônomos estudar o gás em torno do binário, as duas estrelas no centro da complexa nebulosa encontram-se muito próximas uma da outra e muito distantes de nós para poderem ser separadas. O Extremely Large Telescope (ELT) do ESO, atualmente em construção no deserto chileno do Atacama, irá fornecer informação sobre o núcleo do objeto, permitindo que os astrônomos examinem mais de perto o par em colisão.

Esta pesquisa foi publicada na revista Astronomy & Astrophysics.

Fonte: ESO

segunda-feira, 27 de janeiro de 2020

Descoberta estrela gigante com química peculiar

Astrônomos do Observatório Nacional (ON) descobriram e analisaram uma estrela quimicamente peculiar, a gigante vermelha HD150382.


  © Digitized Sky Survey (estrela HD150382)

A estrela já era conhecida, mas foi o primeiro estudo químico realizado. Neste trabalho, a equipe formada pelos brasileiros Nacizo Holanda e Claudio Bastos e pela russa Natalia Drake reportou a descoberta de uma estrela gigante com grande quantidade de lítio em sua atmosfera; o fato não era esperado, com base na teoria de evolução estelar. 

Através da técnica de espectroscopia, os astrônomos podem derivar a composição química das estrelas, bem como seus parâmetros atmosféricos e algumas características físicas. Grandes quantidades de lítio não são esperadas em gigantes vermelhas, visto que as estrelas que evoluem para essa fase experimentam processos de mistura convectiva que acabam diluindo e posteriormente destruindo os átomos de lítio. Entretanto, desde 1982, estrelas raras como a HD150382 vêm sendo descobertas e ainda representam um verdadeiro quebra-cabeça para a astrofísica estelar.

“A mistura convectiva é muito importante para quem trabalha com abundâncias químicas, pois permite acessar o material que foi processado no interior dessas estrelas. O que havia antes é diluído e o que estava ‘oculto’ é dragado para a ‘superfície’. Por isso alguns chamam de dragagem,” explica Nacizo Holanda, um dos autores do trabalho.

Entre as hipóteses que poderiam explicar o aparecimento destas estrelas pouco comuns (aproximadamente 2% das gigantes vermelhas), figuram os seguintes cenários: enriquecimento de lítio através da captura de matéria ejetada em eventos de supernova; acreção de planetas ou de companheiras de baixíssima massa, como anãs marrons (estrelas fracassadas); e a existência de processos de mistura não-tradicionais que ocorrem no interior das estrelas e que atuam sob condições que ainda estão em debate na comunidade científica.

No caso da estrela HD150382, os pesquisadores sugerem que um mecanismo de mistura profunda ocorreu ou ainda ocorre. A estrela em questão é fria, sua temperatura efetiva é de aproximadamente 4.000 K, e apresenta baixa gravidade superficial, o que implica num estágio evolutivo muito avançado, pouco comum até mesmo para estrelas consideradas ricas em lítio.

“O fato é que exceções como esta em astronomia são fatos interessantíssimos para testar modelos alternativos. A gigante HD150382 motiva, não somente a busca de um mecanismo para a formação dessas estrelas ricas em lítio, mas atenta também para um estudo mais direcionado de estrelas mais evoluídas dentro desse pequeno universo de objetos quimicamente peculiares,” revela Nacizo Holanda. Neste sentido, a equipe do Observatório Nacional segue "caçando" essas estrelas com perfil químico e estágio evolutivo similar ao da HD150382.

Um artigo foi publicado no periódico The Astronomical Journal.

Fonte: Observatório Nacional